Size-dependent Optical Response of Magneto-plasmonic Core-shell Nanoparticles
نویسنده
چکیده
Functional properties tunability prospect of multi-layered and multi-metallic nanoparticles with respect to their emerging applications has always been the area of attraction. Magnetoplasmonic nanoparticles (MPNPs) present the possibility to exhibit their tuneable magnetic and optical properties with broad applications in magnetic resonance imaging (MRI), cancer therapy, photovoltaic solar cells, biological microscopy, optical imaging, and biosensing. Present studies found that the optical properties (absorption and scattering efficiencies) of MPNPs using Fe, Co and Ni as magnetic materials coated with single noble metal (Au or Ag) or double (both Au & Ag) coating layer, can be effectively tuned with the controlled size of core and shell layers. It is found that absorption and scattering LSPR peaks occur in Ultraviolet (UV) and visible region of EM for single core-shell MNP@Ag nanoparticles respectively. The absorption LSPR are found in the visible region, and scattering LSPR in NIR region and also get blue shifted for single core-shell of MNP@Au nanospheres. In case of double core-shell layers of MNP@Ag@Au nanoparticles, the absorption and scattering LSPR peaks show spectra in visible and NIR region of EM spectrum and the absorption LSPR peak shifts from visible to UV region and scattering LSPR are found in NIR region with broadening peaks of EM spectrum. It is concluded that the LSPR peak depends upon the thickness of the shell, size of core and material. The shifting of optical peaks towards the longer wavelengths depends on gold shell thickness whereas optical efficiencies depend on silver (as core or shell) thickness.
منابع مشابه
Magneto-Optical Activity in High Index Dielectric Nanoantennas
The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. Howeve...
متن کاملOptical and magneto-optical properties of gold core cobalt shell magnetoplasmonic nanowire arrays.
In this work we present core-shell nanowire arrays of gold coated with a nanometric layer of cobalt. Despite the extremely small Co volume, these core-shell nanowires display large magneto-optical activity and plasmonic resonance determined by the geometry of the structure. Therefore, we are able to tune both the plasmonic and magneto-optical response in the visible range. Through optical and e...
متن کاملHybrid plasmonic lattices with tunable magneto-optical activity.
We report on the optical and magneto-optical response of hybrid plasmonic lattices that consist of pure nickel and gold nanoparticles in a checkerboard arrangement. Diffractive far-field coupling between the individual emitters of the lattices results in the excitation of two orthogonal surface lattice resonance modes. Local analyses of the radiation fields indicate that both the nickel and gol...
متن کاملC4nr03792h 12905..12911 ++
In this work we present core–shell nanowire arrays of gold coated with a nanometric layer of cobalt. Despite the extremely small Co volume, these core–shell nanowires display large magneto-optical activity and plasmonic resonance determined by the geometry of the structure. Therefore, we are able to tune both the plasmonic and magneto-optical response in the visible range. Through optical and e...
متن کاملQuantum effects in the plasmon response of bimetallic core-shell nanostructures.
We report a quantum mechanical study of the plasmonic response of bimetallic spherical core/shell nanoparticles. The systems comprise up to 104 electrons and their optical response is addressed with Time Dependent Density Functional Theory calculations. These quantum results are compared with classical electromagnetic calculations for core/shell systems formed by Al/Na, Al/Au and Ag/...
متن کامل